Der aktuellste Stand der Aufwandsberechnung zu PrimZwillinge

-- von Gideon Müller ---- ergänzt von ZMK --

		Zuweisungen	Abfragen	Kommentare
Bis zur Schleife		4	0	
Nur die Wdh		0 * (n+1)	1 * (n+1)	
Struktur				
im WdhBlock (je nach	A: pruef ist keine Primzahl	h(A) * n * 1	h(A) * n * 1	Zusätzlicher Aufwand von
vorliegender Situation)	B: pruef ist nicht 2. Zwilling	h(B) * n * 2	h(B) * n * 2	istPrimzahl (zahl) $(\Leftrightarrow n_*a_{ip})$
ŕ	C: sonst	h(C) * n * 3	h(C) * n * 2	
Gesamt		4 + 1,11 * n	1 + 2,09 * n	Gesamtaufwand: 7 + 7,38 * n + n*a _{ip}

Nebenrechnungen (nach dem letzten Tafelbild):

Die Anzahl n der Durchläufe in der Wiederholungsstruktur ist abhängig vom übernommenen Parameter max der Obergrenze, bis zu der gesucht werden soll:

$$n = \begin{cases} \frac{\max + 1}{2} & \text{; falls max ungerade ist} \\ \frac{\max + 2}{2} & \text{; sonst} \end{cases}$$

<u>Annahme 1:</u> (Untenstehender Berechnung liegt Variante 1b zugrunde.)

Variante 1a: Durchschnittlich knapp	Variante 1b: Durchschnittlich ca.	
1 von 9 Zahlen sind Primzahlen,	9 von 100 Zahlen sind Primzahlen,	
also $h(Prim) = h(nicht A) = 3/18 = 0,167$	also $h(Prim) = h(nicht A) = 0.09$	
h(A) = 15/18	h(A) = 0.91	
h(B) = 2/18 (geschätzt)	h(B) = 0.07 (geschätzt)	
h(C) = 1/18	h(C) = 0.02	

a) Aufwand für Zuweisungen

$$a_Z = 4 + 0 * (n+1) + 1 * 0.91 * n + 2 * 0.07 * n + 3 * 0.02 * n$$

= 4 + 1.11n

b) Aufwand für Abfragen

$$a_A = 0 + 1 * (n+1) + 1 * 0.91 * n + 2 * 0.07 * n + 2 * 0.02 * n$$

= 1 + 2.09n

Annahme 2: 3 * Z = 1A (drei Zuweisungen entsprechen im Aufwand einer Abfrage)

c) Gesamtaufwand

$$a_G = a_{Z+} 3 * a_A$$

= $(4 + 1,11 * n) + 3 * (1 + 2,09 * n) + (n * a_{ip})$
= $7 + 7,38n + n * a_{ip}$

Hinweis: Der Aufwand a_{ip} für die Methode istPrimzahl(zahl) wird getrennt ermittelt.

Beispiel: max sei 2000,

dann ist der Aufwand a(2000) = $7 + 7.38*1001 + 1001 * a_{ip} = 7394.38 + 1001 * a_{ip}$