

Beispielklausur für zentrale Klausuren Mathematik

Unterlagen für die Lehrkraft - Modelllösungen

	Unterlagen für die Lehrkraft - Modelliosungen	
Nr.		Punkte
1a	$f'(x) = 1,5 \cdot x^2 - 9 \cdot x + 12$	
	$f''(x) = 3 \cdot x - 9$	
	$f'(2) = 0 \land f''(2) = -3 < 0, f(2) = 1$	8
	$f'(4) = 0 \land f''(4) = 3 > 0, f(4) = -1$	0
	Damit ergibt sich der Hochpunkt $H(2 1)$ und der Tiefpunkt $T(4 -1)$.	
	Der gewählte Lösungsansatz und -weg muss nicht identisch mit dem in der Modelllösung sein. Sachlich richtige Alternativen werden mit entsprechender Punktzahl bewertet.	
1b	Nullstellen von f:	
	$f(x) = 0 \Leftrightarrow (x-3) \cdot (0.5 \cdot x^2 - 3 \cdot x + 3) = 0$	
	$\Leftrightarrow x - 3 = 0 \lor 0.5 \cdot x^2 - 3 \cdot x + 3 = 0$	
	$\Leftrightarrow x = 3 \lor x = 3 - \sqrt{3} \lor x = 3 + \sqrt{3}$	3
	Damit ergeben sich die Nullstellen $x_1 = 3$, $x_2 = 3 - \sqrt{3}$ und $x_3 = 3 + \sqrt{3}$.	
	Der gewählte Lösungsansatz und -weg muss nicht identisch mit dem in der Modelllösung sein. Sachlich richtige Alternativen werden mit entsprechender Punktzahl bewertet.	
1c	$f^{\prime\prime\prime}(x) = 3$	
	$f''(3) = 0 \land f'''(3) = 3 \neq 0, f(3) = 0$	3
	Damit ergibt sich der Wendepunkt $W(3 0)$.	
	Gleichung der Wendetangente t mit $y = m \cdot x + b$:	
	m = f'(3) = -1,5	
	Wegen $W \in t$ ergibt sich: $0 = -1.5 \cdot 3 + b \Leftrightarrow b = 4.5$	4
	und damit die Gleichung der Wendetangente $t: y = -1.5 \cdot x + 4.5$.	
	Der gewählte Lösungsansatz und -weg muss nicht identisch mit dem in der Modelllösung sein. Sachlich richtige Alternativen werden mit ent-	

	sprechender Punktzahl bewertet.	
1d	A: Die Aussage ist wahr, da für die Steigung der Geraden gilt:	
	$m = \frac{f(6) - (-1)}{6 - 4} = \frac{9 + 1}{2} = 5$	3
	B: Die Aussage ist falsch, da z. B. wegen $f''(4) = 3 > 0$ der Graph von f' an der Stelle $x = 4$ steigt.	2
	C: Die Aussage ist wahr, da an der Wendestelle $x = 3$ der Graph von f am steilsten fällt und $f'(3) = -1,5$ gilt.	3
	Der gewählte Lösungsansatz und -weg muss nicht identisch mit dem in der Modelllösung sein. Sachlich richtige Alternativen werden mit entsprechender Punktzahl bewertet.	
1e	(1)Der Graph der Abbildung 2A entsteht aus dem Graphen von f durch Streckung mit dem Faktor 2 in y -Richtung. Daraus ergibt sich die passende Funktionsgleichung $g_1(x) = 2 \cdot f(x)$.	2
	(2)Der Graph der Abbildung 2B entsteht aus dem Graphen von f durch Stauchung mit dem Faktor 0,5 in y -Richtung und Spiegelung an der x -Achse. Daraus ergibt sich die passende Funktionsgleichung $h(x) = -0.5 \cdot f(x)$.	4
	Der gewählte Lösungsansatz und -weg muss nicht identisch mit dem in der Modelllösung sein. Sachlich richtige Alternativen werden mit entsprechender Punktzahl bewertet.	
	Summe:	32

Grundsätze für die Bewertung (Notenfindung)

Für die Zuordnung der Notenstufen zu den Punktzahlen ist folgende Tabelle zu verwenden:

Note	Punkte	Erreichte Punktzahl
sehr gut plus	15	64 - 62
sehr gut	14	61 - 58
sehr gut minus	13	57 - 55
gut plus	12	54 - 52
gut	11	51 - 48
gut minus	10	47 - 45

ZK M A1 (ohne CAS) Seite 5 von 5

befriedigend plus	9	44 - 42
befriedigend	8	41 - 38
befriedigend minus	7	37 - 35
ausreichend plus	6	34 - 32
ausreichend	5	31 - 28
ausreichend minus	4	27 - 25
mangelhaft plus	3	24 - 21
mangelhaft	2	20 - 17
mangelhaft minus	1	16 - 13
ungenügend	0	12- 0

Beispielklausur für zentrale Klausuren Mathematik

	Unterlagen für die Lehrkraft - Modelllösungen		
Nr.		Punkte	
2a	h(3) = 5,645		
	Im Modell wäre die Blüte 3 Tage nach Beobachtungsbeginn ca. 5,6 cm hoch.	3	
	Der gewählte Lösungsansatz und -weg muss nicht identisch mit dem in der Modelllösung sein. Sachlich richtige Alternativen werden mit entsprechender Punktzahl bewertet.		
2b	$\frac{h(3) - h(0)}{3 - 0} = 1,215$		
	$h'(t) = -0.045 \cdot t^2 + 0.9 \cdot t$	4	
	h'(3) = 2,295		
	Die Blüte hat im Modell in den ersten drei Tagen der Beobachtung eine durchschnittliche Wachstumsgeschwindigkeit von ca. 1,2 cm pro Tag.	4	
	Drei Tage nach Beobachtungsbeginn liegt eine momentane Wachstumsgeschwindigkeit von ca. 2,3 cm pro Tag vor.		
	Der gewählte Lösungsansatz und -weg muss nicht identisch mit dem in der Modelllösung sein. Sachlich richtige Alternativen werden mit entsprechender Punktzahl bewertet.		
2c	Gesucht ist die Maximalstelle von h sowie das Maximum selbst.		
	Mit der notwendigen Bedingung $h'(t) = 0$ folgt: $-0.045 \cdot t^2 + 0.9 \cdot t = 0$. Diese quadratische Gleichung hat die beiden Lösungen $t_1 = 0$ und $t_2 = 20$. Wegen $h''(20) = -0.9 < 0$ liegt an der Stelle $t_2 = 20$ ein Maximum mit $h(20) = 62$ vor. Für den gegebenen Sachzusammenhang handelt es sich offensichtlich auch um das absolute Maximum.	9	
	Die Blüte erreicht 20 Tage nach Beobachtungsbeginn ihre maximale Höhe von 62 cm.		
	Der gewählte Lösungsansatz und -weg muss nicht identisch mit dem in der Modelllösung sein. Sachlich richtige Alternativen werden mit entsprechender Punktzahl bewertet.		
2d	Gesucht ist zunächst die Zeit t, für die h' maximal ist.	6	
	<u> </u>	1	

	Summe:	32
	Der gewählte Lösungsansatz und -weg muss nicht identisch mit dem in der Modelllösung sein. Sachlich richtige Alternativen werden mit entsprechender Punktzahl bewertet.	
	C: $f''(12) = 0$, weil die Blüte nach 12 Tagen die höchste Wachstumsgeschwindigkeit aufweist.	2
	B: $f'(24) = 0$, weil die Blüte anscheinend nach 24 Tagen nicht weiter wächst.	2
	A: $f(7) = 40$, weil ablesbar ist, dass die Blüte 7 Tage nach Beobachtungsbeginn eine Höhe von 40 cm erreicht hat.	2
2e	Beispielsweise können genannt werden:	
	Der gewählte Lösungsansatz und -weg muss nicht identisch mit dem in der Modelllösung sein. Sachlich richtige Alternativen werden mit entsprechender Punktzahl bewertet.	
	Nach dem Modell sollte die Pflanze also 8 Tage nach Beobachtungsbeginn gedüngt werden.	
	$h''(t) = 0 \Leftrightarrow -0.09 \cdot t + 0.9 = 0 \Leftrightarrow t = 10$. Weil zusätzlich $h'''(10) = -0.09 < 0$ gilt, ist $t = 10$ die gesuchte Stelle.	

Grundsätze für die Bewertung (Notenfindung)

Für die Zuordnung der Notenstufen zu den Punktzahlen ist folgende Tabelle zu verwenden:

Note	Punkte	Erreichte Punktzahl
sehr gut plus	15	64 - 62
sehr gut	14	61 - 58
sehr gut minus	13	57 - 55
gut plus	12	54 - 52
gut	11	51 - 48
gut minus	10	47 - 45
befriedigend plus	9	44 - 42
befriedigend	8	41 - 38
befriedigend minus	7	37 - 35
ausreichend plus	6	34 - 32
ausreichend	5	31 - 28
ausreichend minus	4	27 - 25
mangelhaft plus	3	24 - 21
mangelhaft	2	20 - 17
mangelhaft minus	1	16 - 13
ungenügend	0	12- 0